

# Long term measurements of the energy balance at urban area in Łódź, central Poland

Krzysztof Fortuniak Włodzimierz Pawlak Mariusz Siedlecki

> Department of Meteorology and Climatology University of Łódź Poland

## Eddy-covariance sites in Poland



# City structure and measuremen points



## City centre and measurement points



source areas at p = 50, 75 and 90% calculated for turbulent fluxes measured in unstable stratification

| Lipowa      | 0.41 | 0.36 | 0.29 | 0.35 |
|-------------|------|------|------|------|
| Narutowicza | 0.21 | 0.27 | 0.40 | 0.27 |

## Roughness length for momentum



# Measurement points





### Quality control – stationarity tests



Three stationarity tests used in postprocessing data quality control:

RN<sub>FW</sub> – the statistic proposed by **Foken and Wichura (1996)** with critical value 0.3;

NR – the non-stationarity ratio given by **Mahrt (1998)** with critical value NR=2;

RCS – the relative covariance stationarity criterion, introduced by **Dutaur et al. (1999)** and modified by **Nemitz et al. (2002)** with critical value RCS=0.5.

## Diurnal course of the stability parameter



Diurnal course of the stability parameter,  $\zeta = z'/\Lambda$ , at Lipowa and Narutowicza sites for the entire study periods. Lines from the bottom to the top indicate 5th, 10th, 25th, 50th (median – bold line), 75th, 90th, and 95th percentiles.

### Histograms of nigh-time (Kd<5 Wm<sup>-2</sup>) Q<sub>H</sub> and Q<sub>E</sub>



-80

-60

-40

-20

 $Q_e [Wm^{-2}]$ 





#### Average diurnal course of $Q_{H}$ in seasons



#### Average diurnal course of $Q_F$ in seasons





#### Average diurnal course of energy balance components in seasons



#### Average diurnal course of energy balance components in seasons



## $Q_H$ as a function of Q\*



Sensible heat flux as a function of radiation balance plotted on the base of mean diurnal course in months.

## **Q<sub>H</sub>** parameterization



|                                      | Model                                       |      | $a_1$ | $a_2$ | $a_3$ | RMSE | d     |
|--------------------------------------|---------------------------------------------|------|-------|-------|-------|------|-------|
| 1)                                   | $Q_H = a_1 Q^* + a_3$                       | Lip. | 0.37  | -     | 19    | 12.4 | 0.977 |
|                                      |                                             | Nar. | 0.36  | -     | 16    | 10.5 | 0.982 |
| $2)  Q_H = a_1 Q^* + a_2 \partial_1$ | $0 = \pi 0 * 1 \pi 30 * / 34 1 \pi$         | Lip. | 0.37  | -0.22 | 18.7  | 7.4  | 0.992 |
|                                      | $Q_H = a_1 Q^{*} + a_2 O Q^{*} / O t + a_3$ | Nar. | 0.37  | -0.19 | 10.8  | 6.5  | 0.993 |

# Integral turbulence statistics – normalized standard deviations of wind components

#### Normalized standard deviations in **neutral stratification**:

Lipowa:  $\sigma_{\mu}/u_{*} = 2.34 \pm 0.42,$  $\sigma_v/u_* = 1.65 \pm 0.18,$  $\sigma_{w}/u_{*} = 1.17 \pm 0.08$ Narutowicza:  $\sigma_w/u_* = 1.27 \pm 0.09$  $\sigma_{\mu}/u_{*} = 2.28 \pm 0.20,$  $\sigma_v/u_* = 1.79 \pm 0.23$ , Urban averages (Roth, 2000)  $\sigma_{\rm u}/u_* = 2.32 \pm 0.16$ ,  $\sigma_{\rm v}/u_{*} = 1.81 \pm 0.20$ ,  $\sigma_w/u_* = 1.25 \pm 0.07$ Rural references (Panofsky & Dutton, 1984)  $\sigma_{\mu}/u_{*} = 2.39 \pm 0.03,$  $\sigma_{\rm v}/u_{*} = 1.92 \pm 0.05,$  $\sigma_{w}/u_{*} = 1.25 \pm 0.03$ 

### Normalized standard deviations of wind components



# Spectral turbulence statistics – non-dimensional dissipation rate of turbulent kinetic energy

Non-dimensional dissipation rate of TKE,  $\phi_{\varepsilon}$ , is related to other universal functions via normalised TKE budget (*Kaimal and Finnigan 1994*):

$$\phi_m - z / L - \phi_t - \phi_p - \phi_\varepsilon = 0,$$

where  $\phi_m$  is shear production, -z/L is buoyant production,  $\phi_t$  is turbulent transport, and  $\phi_p$  is pressure transport. Common assumption, that a sum of turbulence and pressure transport is negligible, leads to the simplification:

$$\phi_{\varepsilon}=\phi_m-z/L,$$

which suggest the general form of the  $\phi_{\varepsilon}$ , related to the better known  $\phi_m$ . For example taking  $\phi_m$  after Högström (1990) :

$$\Phi_{m}(\zeta) = \begin{cases} (1 - 19 \cdot \zeta)^{-1/4}, & \zeta < 0\\ 1 + 4.8 \cdot \zeta, & \zeta \ge 0 \end{cases}$$

$$\Phi_{\varepsilon}(\zeta) = \begin{cases} \left(1 - 19 \cdot \zeta\right)^{-1/4} - \zeta, & \zeta < 0\\ 1 + 3.8 \cdot \zeta, & \zeta \ge 0 \end{cases}$$

# Spectral turbulence statistics – non-dimensional dissipation rate of turbulent kinetic energy



Black line (fit):  $\Phi_{\varepsilon}(\zeta) = \begin{cases} \left(1 - 38 \cdot \zeta\right)^{-1/4} - \zeta, & \zeta < 0 \\ 1 + 3.5 \cdot \zeta, & \zeta \ge 0 \end{cases}$ 

u - red

v - blue

w – green

Average for all components - orange

(Högström 1990): $\Phi_{\varepsilon}(\zeta) = \begin{cases} (1-19 \cdot \zeta)^{-1/4} - \zeta, & \zeta < 0 \\ 1+3.8 \cdot \zeta, & \zeta \ge 0 \end{cases}$ (Wyngaard and Coté, 1971): $\phi_{\varepsilon}^{2/3}(\zeta) = \begin{cases} 1+0.5(-\zeta)^{2/3} & -2 \le \zeta \le 0 \\ 1+2.5\zeta^{3/5} & 0 \le \zeta \le 2 \end{cases}$ (Su et al. 2004) - grey area

### Summary

- 1. The data from Łódź belongs to the longest eddy-covariance urban flux measurements
- 2. The annual and diurnal courses of turbulent fluxes in Łódź are typical for urban areas: the turbulent sensible heat flux is larger than the latent heat flux, Q<sub>H</sub> remains positive after Q\* turns negative in the late afternoon/evening due to release from heat storage, but it becomes negative in significant number of nights.
- 3. The average fluxes on both sites are similar, which allow to assume that results are representative for central part of city with similar morphology.
- 4. The hysteresis effect between Q\* and  $Q_H$  allows to improve simple parameterization of  $Q_H$ .
- 5. Both integral and spectral turbulence characteristics show applicability of the universal rules worked out for homogenous flat surfaces at urban areas.



# Thank you



